Histopathological View of Bifurcation lesions

Finn V. Aloke, MD. CVPath Institute, Inc. Gaithersburg, MD, USA.

Disclosure

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Employment in industry: No

Honorarium: Amgen; Abbott Vascular; Biosensors; Boston Scientific; Celonova; Cook Medical; CSI; Lutonix Bard; Sinomed; Terumo Corporation.

Institutional grant/research support: R01 HL141425 Leducq Foundation Grant; 480 Biomedical; 4C Medical; 4Tech; Abbott; Accumedical; Amgen; Biosensors; Boston Scientific; Cardiac Implants; Celonova; Claret; Concept Medical; Cook; CSI; DuNing; Edwards; Emboline; Endotronix; Envision Scientific; Lutonix/Bard; Gateway; Lifetech; Limflo; MedAlliance; Medtronic; Mercator; Merill; Microport; Microvention; Mitraalign; Mitra assist; NAMSA; Nanova; Neovasc; NIPRO; Novogate; Occulotech; Orbus Neich; Phenox; Profusa; Protembis; Qool; Recor; Senseonics; Shockwave; Sinomed; Spectranetics; Surmodics; Symic; Vesper; W.L. Gore; Xeltis.

Owner of a healthcare company: No

Stockholder of a healthcare company: No

Background

Bifurcation Lesions

- Defined as coronary artery narrowing occurring adjacent to, and/or involving a significant side branch (usually >2 mm) that you don't want to lose
- Account for nearly 20% of coronary lesions requiring PCI
- Associated with worse clinical outcomes compared with non-bifurcation PCI

Medina Classification

Medina A, Suarez de Lezo J, Pan M. [A new classification of coronary bifurcation lesions]. Rev Esp Cardiol. 2006;59:183

PLAQUE FORMATION IN BIFURCATIONS

PLAQUE FORMATION IN BIFURCATIONS

Plaque Formation in Bifurcations

Greater atherosclerotic plaque burden occurs at low-shear regions of bifurcations

Histopathological classification of bifurcation lesions

Histopathological classification of bifurcation lesions

Prevalence of Plaque distribution in bifurcation lesions

BIFURCATION TREATMENT STRATEGIES

Y stent

Culottes

OUTCOME OF PCI IN BIFURCATIONS ANALYSIS OF THE CVPATH COHORT

Stent type	DES (n=14)	BMS (n=20)
<u>Restenosis</u>		
MV (%)	1 (7)	6 (30)
SB (%)	2 (14)	5 (25)
<u>Thrombosis (total)</u>		
MV (%)	10 (71)	8 (40)
SB (%)	6 (43)	6 (30)
<u>Thrombosis ≥ 30 days</u>		
MV (%)	7 (88)	5 (25)
SB (%)	3 (38)	2 (10)
Stent related death	10 (71)	8 (40)
Procedure related death	1 (7)	2 (10)

PATHOPHYSIOLOGY OF PCI IN BIFURCATIONS

OUTCOME OF PCI IN BIFURCATIONS ANALYSIS OF THE CVPATH COHORT

Bifurcation Stenting with 2 stent techniques from CVPath Stent Registry (2005 to 2018)

Stent Failure in Bifurcation stenting Stratifie	ed by Duration
---	----------------

Duration of stent implantation (days)		0-30	31-360	361-
N=43		13 (30%)	16 (37%)	14 (33%)
Stent failure mode				
Stent thrombosis	16 (37%)	6 (14%)	4 (9%)	6 (14%)
Restenosis	2 (4%)	0	1 (2%)	1 (2%)

Causes of thrombo	sis	Stent	Failure o	divided b	by type	of stents
Causes of thrombosis	Total n=16	Туре	n=43	Event	ST	Restenosis
Uncovered struts	6 (38%)	T-Stent	21 (49%)	7 (33%)	6 (29%)	1 (5%)
Malapposition	4 (25%)	V-Stent	7 (16%)	2 (29%)	2 (29)	0 (0%)
Hypersensitivity	2 (13%)	Culotte	10 (23%)	5 (50%)	4 (40%)	1 (10%)
Medial injury with dissection	1 (6%)	Crush Stent	3 (7%)	2 (67%)	2 (67%)	0 (0%)
Protrusion of NC	1 (6%)					
2 stent technique	1 (6%)	Kissing	2 (5%)	2 (100%)	2 (100%)	0 (0%)
Unknown	1 (6%)	stent				

COMPLICATIONS OF PCI IN

BIFURCATIONS

RESTENOSIS

69M with stent implantation in LAD/LD. 4 months after the PCI, he underwent CABG due to restenosis of LAD and LD. He died from complications of CABG.

Restenosis in distal main vessel

60-yrs-old M Xience 1 year LMT to RI PLC 3 year Vision and Cypher Overlapped

Restenosis in distal main vessel

Xience LMT-RI 5 days Xience LAD 1.5 years

76-yrs old M, with HT, CABGx3 3 months ago with continuous CP, 5 days prior to death had stent procedure and had witnessed arrest

Stent thrombosis related to Uncovered struts

73-yrs-old obese F, SLE with renal involvement, CRF, steroid myopathy, dyslipidemia, CAD and Paraoxysmal Afib, admitted with NSEMI 17 days before death, stents in LM, LAD and LCX, died from multiorgan failure.

Atherectomy debris, in myocardium

Stent Thrombosis Related to Protrusion of Necrotic Core

Endeavor LAD and LD 4 days prior to death Etiology for stenting was AMI

66-yrs-old-WM, presented with CP(NSTEMI), implanted two stents LAD, died 4 days later at home.

COMPLICATIONS OF PCI IN BIFURCATIONS

SUBACUTE THROMBOSIS

37 years old female, history of hyperlipidemia and smoking.

Stent implantation in LAD/LD was performed for CAD.

<u>7days</u> after the procedure, she died suddenly.

COMPLICATIONS OF PCI IN BIFURCATIONS LATE STENT THROMBOSIS

Jan. 05: PCI of LCX /LOM followed by DES.

Oct. 05: Presented with non-ST elevation MI (9-months)

Angiography showed severe narrowing of LCX. The LCX was opened with balloon angioplasty. But the patient died shortly thereafter.

* Thin neointima

Culotte/Crush stent techniques shows overlapping stent configuration in the main vessel

Therefore, overlapping stent site more likely to show delayed healing and greater neointimal thickness

Delayed healing at sites of overlapping stents

Sakamoto et al. Expert Rev Med Devices. 2018 Sep;15(9):665-682.

BIFURCATION TREATMENT STRATEGIES

Provisional vs. Two-stent technique

Conclusion

- The development of atherosclerotic plaques in bifurcations is closely related to shear stress
- Plaque burden is higher in low shear areas
- PCI in bifurcation lesions is associated with a higher complication rate as compared to non-bifurcated lesions
- Stent implantation may change the vessel geometry and thus alter the shear stress
- Rigid stents might straighten the artery leading to an expansion of low shear areas which might contribute to restenosis
- On the other hand, flow disturbance is the primary cause of delayed arterial healing in bifurcation lesions following DES implantation
- Refinements in stent geometry might overcome these issues

Acknowledgments

CVPath Institute

Hiroyuki Jinnouchi, MD Atsushi Sakamoto, MD Sho Torii, MD Yu Sato, MD Anne Cornelissen, MD Salome Kuntz, MD Qi Cheng, MD Maria Romero, MD Robert Kutz, MS Abebe Atiso, HT **Jinky Beyer** Lila Adams, HT Frank D Kolodgie, PhD Aloke V. Finn, MD

CTO in a side branch

71—yrs old M with HT, remote CABG: CP, Inf MI Xience PLC 5 days Promus LOM 1 years

Stent thrombosis related to Malapposition

Crush PLC-F PLC Xience 1 days LOM Xience 1 days

73-yrs-old M, CAD post LAD stenting 8-yrs prior to presenting with atypical chest pain, died 1 day post stenting of PLC/LOM.

